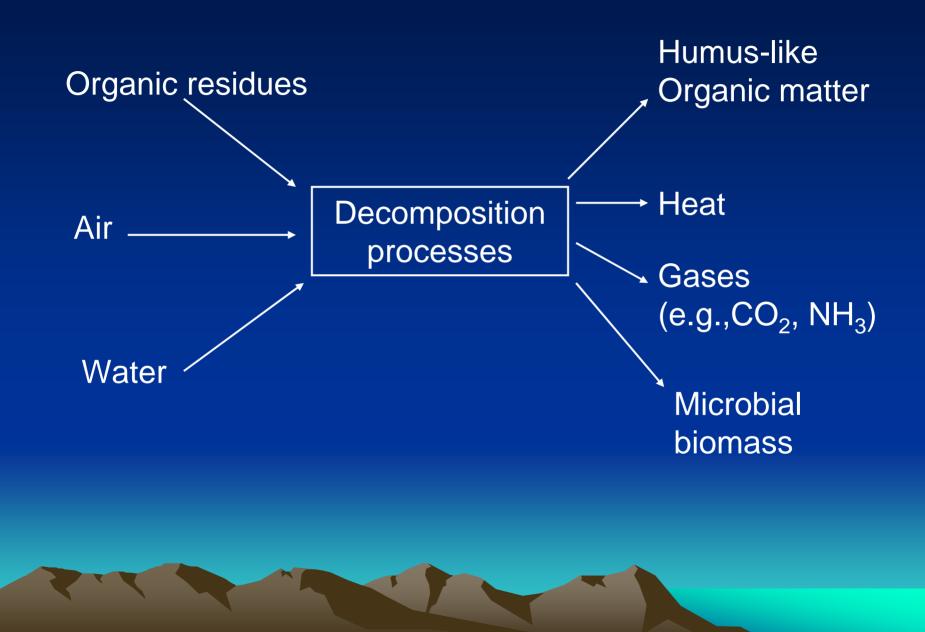
Composting Organisms

Mary Stromberger Assistant Professor, Soil Microbiology Dept. Soil and Crop Sciences, CSU

Composting of organic wastes

...I have always looked upon decay as being just as wonderful and rich an expression of life as growth. -- Henry Miller, The Wisdom of the Heart

• The what and why of composting


Compost biota and their activities

Vermicomposting

The What and Why of Composting

- Compositing = biological decomposition and stabilization of organic substrates
 - Under biologically-produced thermophilic temperatures
 - Produces a final product that is stable, free of pathogens and plant seeds and can be beneficially applied to land

- Reduce waste volume
- Promote plant productivity and soil quality
- Eliminate pathogens, deleterious organisms, and weed seeds
- Sanitize organic wastes

Compost Biota

• Fauna

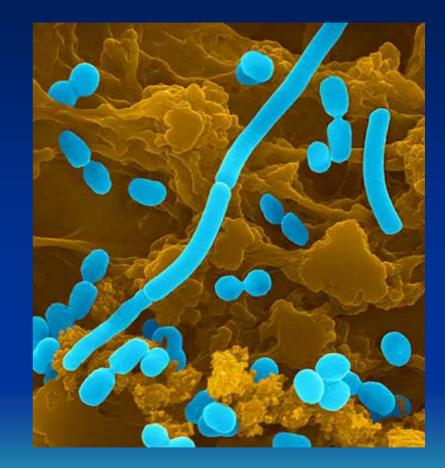
Protozoa

- Decomposer microorganisms
 - Bacteria
 - Actinomycetes
 - Fungi

Fauna

- Important in the beginning of compost process
- Grind coarse materials into smaller bits (communition)
- Increases surface area:volume ratio
- Improves access of microbes to organic substrates

Protozoa

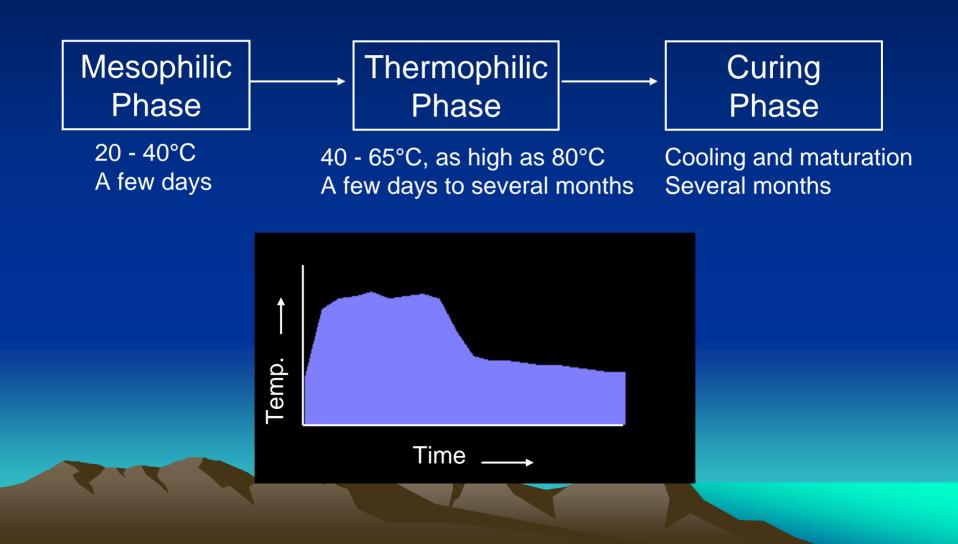

- Active in the early phases of composting
- Process smaller bits of organic matter
- Prey upon microbial populations
 - Regulates numbers
 - Recycles nutrients

Bacteria

- Single-celled prokaryotes
- Smallest living organisms
- Most numerous group in compost
- Responsible for most of the decay and heat generation in compost
- Nutritionally diverse

Actinomycetes

- Filamentous bacteria
- Produce geosmin
- Degraders of cellulose, hemicellulose and lignin
- Important during the thermophilic and cooling stages


Fungi

- Multicellular eukaryotes
- Include mushrooms, molds and yeasts
- Usually filamentous
- Decomposers of complex plant polymers
 - cellulose,
 hemicellulose and
 lignin

00010 10KV 5U

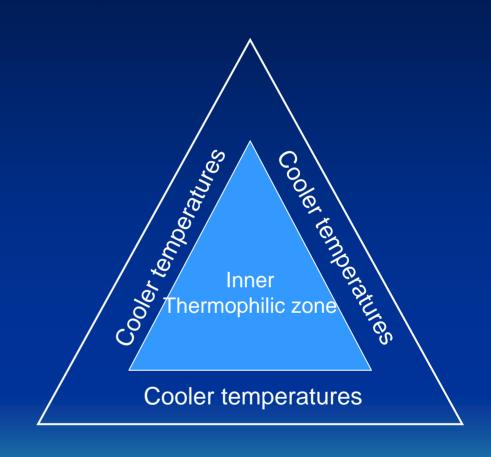
Overview of the compost process

Stage 1: Mesophilic Stage

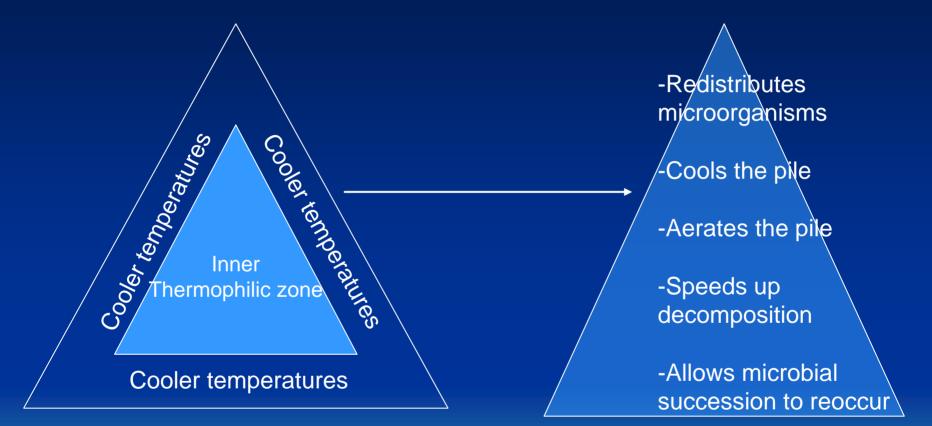
- Bacteria and Fungi are key players
 Fauna and protozoa also important
- Decomposition of readily available substrates
 - Sugars, proteins and starch
- Excess energy is released as heat, causing pile temperature to increase

Stage 2: Thermophilic Stage

- Heat-loving bacteria, actinomycetes and fungi are key players
- Heat intolerant organisms go dormant or are destroyed
 - Human and plant pathogens
- High temperatures accelerate breakdown of proteins, fats, and complex polymers


Microorganisms Associated with Compost Piles

	Mesophilic Stage	Thermophilic Stage
Bacteria	10 ⁸ cells g ⁻¹ Pseudomonas, Bacillus, Flavobacterium, Clostridium	10 ⁹ cells g ⁻¹ Bacillus, Thermus
Actinomycetes	10 ⁴ cells g ⁻¹ Streptomyces	10 ⁸ cells g ⁻¹ Streptomyces, Micropolyspora, Thermoactinomyces, Thermomonospora
Fungi	10 ⁶ fungi g ⁻¹ Alternaria, Cladosporium, Aspergillus, Mucor, Humicola, Penicillium	10 ⁷ fungi g ⁻¹ Aspergillus, Mucor, Chaetomium, Humicola, Absidia, Sporotrichum, Torula (yeast),


Thermoascus

Zonation of temperatures

- Internal temperatures can be as high as 70 or 80° C
- Center of pile is dominated by the most heat-tolerant bacteria (eg., *Bacillus*)
- Edges of pile support diverse populations of thermophilic bacteria, actinomycetes and fungi

Importance of turning the pile

Stage 3: Curing/Cooling Stage

- Mesophilic bacteria, actinomycetes and fungi are key players
- Further chemical and physical changes in the compost
 - Decomposition of recalcitrant polymers by actinomycetes and fungi
 - Degradation of fermentation products, methane, and other noxious gases which accumulated earlier in anaerobic microsites
 - Reduction of odors and toxic intermediates

Vermicomposting

- Compositing with worms and microorganisms
- Eisenia foetida
 - Aka redworms, red wriggler worms, tiger worms
 - Thrive on rotting vegetation, compost and manure

Physical effects on compost

Burrowing action of worms help

- aerate the compost
- mix substrates
- redistribute microorganisms

Composting time is faster! Less need to turn the pile!

Biochemical effects on compost

- Communition of organic residues
 - Enhances microbial access to substrates
- Production of casts

 Source of readily available sugars and proteins for microbes

Final Words

- Composting is a microbial process
- Its rate is controlled by factors which affect microbial activities
- Lack of suitable substrates, low moisture content, non-optimum temperatures, and poor oxygen diffusion are the most common rate-limiting factors in composting